MECA-H-406 Composite structures - Exercises 4

1. According to the Tsaï-Hill criterion (maximum work theory), determine if the following laminated composites will survive the load applied.

$$\sigma_{LU}=1950$$
 MPa, $\sigma_{TU}=50$ MPa, $\sigma_{LU}^{'}=1150$ MPa, $\sigma_{TU}^{'}=230$ MPa, $\tau_{LTU}=125$ MPa.

2. Consider a carbon-epoxy composite with $\alpha_L = -0.4\text{e-}6\ 1/\text{K}$ and $\alpha_T = 28\text{e-}6\ 1/\text{K}$. Compute the coefficients of thermal expansion in the $\{x,y\}$ frame.

- **3.** Consider a four-ply laminate with identical layers so that E_L =41 GPa, E_T =8 GPa, ν_{LT} =0.28, G_{LT} =4.1 GPa; compute :
- the stiffness matrix of each ply in the $\{x, y\}$ frame.
- the matrices A, B and D of the laminate.

4. For each of the laminates below, describe the deformation under a unidirectional traction N_x and under a bending moment M_x .

(a)	+45°	\neg
	+20°	
	-45°	
	-20°	

(b)	+20°
	-20°
	-20°
	+20°

(c)	+20°	
	-20°	
	+20°	
	-20°	