Robotic hummingbird:
Design of a control mechanism for a hovering flapping wing micro air vehicle

Matěj Karásek

Supervisor: prof. André Preumont

Public PhD defence
Université libre de Bruxelles
École polytechnique de Bruxelles
November 21, 2014
Flight in nature

Gliding flight

Powered (flapping) flight

Different evolution paths!
History of manned flight

Daedalus & Icarus, Greek mythology

Prisoners “flying” kites in China

DaVinci flying machines

1st manned flight, hot air balloon, Montgolfiers

1st steerable glider, George Cayley

559

1490

1783

1804

1st steerable & powered balloon, Henri Giffard

1st powered flight, Clément Ader

1st controlled & powered flight, Wrights

1st rotary aircraft flight, Paul Cornu

1852

1890

1903

1907

Equivalents nature vs aircraft

High lift devices

- Slotted trailing edge flap (c)
- Split flap (d)
- Trailing-edge flap (a)
- Leading-edge slat (b)

Vortex generators

- a) Protruding digit in a bat wing
- b) Serrated leading edge feather of an owl
- c) Corrugated dragonfly wing

Norberg, 2002
Unmanned Aerial Vehicles
(UAVs, Drones, Remotely Piloted Aircraft)

Advantages over manned aircraft:
• Less payload → smaller, lighter
• No men on-board → operation in risky environments
• Cheaper + cheaper operation

• First developed in 1990s
• Remote / autonomous operation
• On-board camera + live video link
• Payload: cameras, sensors, weapons

General Atomics MQ-1 Predator (1994)
15 m, endurance 24 h, range 1100 km

AeroVironment Wasp (2007)
72 cm, endurance 50 min, range 5 km

Prox Dynamics Black Hornet (2013)
10 cm, endurance 20 min, range 1.6 km

→ Miniaturization
Micro Air Vehicles

- Drones restricted in size and weight
- Operation indoors and outdoors
- Hovering capability

Applications:

→ Potential for flapping wings
Flapping flight

Forward flight

Hovering flight

Hedrick Lab, University of North Carolina

DISCOVERY – Hummingbird Time Warp
http://youtu.be/D8vjtTXgLJw

I. Cohen Group, Cornell University
http://vimeo.com/6362049
Hovering flapping flight

Wing tip trajectory in hover

Hummingbirds

Giant hummingbird 21.5 cm, 24 g, 12 Hz

Bee hummingbird 5 cm, 1.6 g, 80 Hz

Hawk-moth Manduca Sexta 10 cm, 1.6 g, 26 Hz

Fruit fly 0.5 cm, 2 mg, 218 Hz

Damselfly Megaloprepus 19 cm

Images from: www.wikipedia.org, Flickr (Floris van Bruegel, Sergio Quesada)
Lift enhancing mechanisms

Flow topology

Song et al., 2014

Lift enhancing mechanisms

Bomphrey et al. 2009

• Delayed stall of the leading edge vortex

Van den Berg & Ellington, 1997

• Kramer effect (Rotational lift)
• Wake capture
• Clap and fling (some insects)

Sane, 2003

• Wake capture
• Clap and fling (some insects)
Hummingbirds

BBC: Life - Birds
Wing motion control

NATURE - Hummingbirds: Magic in the Air
http://www.youtube.com/watch?v=Hrlr45uGapQ
Fliers with four wings

E. van Wijk & J. Schaap - Flight Artists project, Wageningen University
Flapping wing MAVs

Tail control

DelFly (2005)
TU Delft, deWagter et al., 2014
18 cm wingspan
20 g, 10-14 Hz

Four wing designs

BionicOpter (2013)
Festo, Bionic Learning Network
63 cm wingspan
175 g, 15-20 Hz

Two wing, tail-less designs

Harvard RoboBee (2013)
3.5 cm wingspan
80 mg
120 Hz

Nano Hummingbird (2011)
16.5 cm wingspan
19 g
30 Hz

Harvard, Chirarattananon et al., 2014
AeroVironment, Inc. + DARPA
Nano hummingbird

→ The only 2 wing tail-less MAV with on board-power

Developed by AeroVironment, Inc. (5 years)
Financed by DARPA (4 million USD)
Project goal

→ Tail-less flapping wing MAV with a single wing pair

<table>
<thead>
<tr>
<th>Wing length (mm)</th>
<th>Mass (mg)</th>
<th>Adapted from: C.H. Greenewalt, Hummingbirds. Dover, 1990.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>80 mg</td>
<td>Harvard RoboBee</td>
</tr>
<tr>
<td>16.5</td>
<td>19 g</td>
<td>Nano Hummingbird</td>
</tr>
<tr>
<td></td>
<td>30 Hz</td>
<td>Our target</td>
</tr>
</tbody>
</table>

3.5 cm wingspan
80 mg
120 Hz

16.5 cm wingspan
19 g
30 Hz

~ 20 cm wingspan
~ 20 g
20 ~ 30 Hz

Chirarattananon et al., 2014

www.avinc.com/nano
Thesis overview

Goal: Design a mechanism controlling the flight by wing motion changes

THEORETICAL PART

1. Mathematical modelling
2. Hovering flapping flight stability
3. Control and flight simulation

\[
\begin{bmatrix}
\dot{\mathbf{u}} \\
\dot{\mathbf{q}} \\
\dot{\mathbf{\theta}}
\end{bmatrix} =
\begin{bmatrix}
\dot{\mathbf{\hat{X}_u}} & \dot{\mathbf{\hat{X}_q}} & g \\
\mathbf{\hat{M}_u} & \mathbf{\hat{M}_q} & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{u} \\
\mathbf{q} \\
\mathbf{\theta}
\end{bmatrix} +
\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}
\mathbf{\hat{M}_{ext}}
\]

PRACTICAL PART

4. Flapping mechanism
5. Control mechanism
Flapping mechanism

Flight muscles, Ilustra Media (http://youtu.be/aFdvkopOmw0)

www.faulhaber.com
Flapping mechanism
Flapping mechanism

- Aluminium / steel rivets
- Nylon gears
- Frame + links: 3D printing
- DC Motor
- DM ABS, resolution 16 µm
Flapping motion

Flapping frequency 25 Hz

Photron FASTCAM SA3
2000 fps

Flapping amplitude \(\rightarrow 180^\circ \)
Wing design

BoPET (Mylar) Polyester (Icarex) CFRP

DISCOVERY – Hummingbird Time Warp
http://youtu.be/D8vJTXgIJw
Lift measurements

Lift

string

Scale
Lift measurements

\[\text{Lift} = \text{Sensor 1} + \text{Sensor 2} \]

\[\text{Moment} = K (\text{Sensor 1} - \text{Sensor 2}) \]
Wing shape evolution

Over 70 designs built and tested
Mechanism evolution

A: m = 5.2 g
(Feb. 2012)

C2: Lift = 6.4 g, m = 5.8 g
(May 2012)

E2: Lift = 9.6 g, m = 7.5 g
(Oct. 2012)

Take off demonstration: Motor not in the centre → Guidance
Mechanism evolution

TEST BENCH PROTOTYPES

A: \(m = 5.2 \text{ g} \) (Feb. 2012)

C2: Lift = 6.4 g, \(m = 5.8 \text{ g} \) (May 2012)

E2: Lift = 9.6 g, \(m = 7.5 \text{ g} \) (Oct. 2012)

E4: Lift = 16.1 g, \(m = 10.1 \text{ g} \) (Jan. 2014)

FLIGHT PROTOTYPES

G2: Lift = 9.6 g, \(m = 9.0 \text{ g} \) (Apr. 2013)

J2: Lift = 16.0 g, \(m = 12.5 \text{ g} \) (Jan. 2014)
Uncontrolled prototype

- **Weight:** 12.5 g
- **Wingspan:** 21 cm
- **Power:** off-board

- **Flapping frequency:** up to 24 Hz
- **Lift:** up to 155 mN ≈ 16 g

\[F_L^* = \text{const} \cdot f^2 \]

\[f_{\text{take-off}} = 21.5 \text{ Hz} \]
Uncontrolled prototype

- Weight: 12.5 g
- Wingspan: 21 cm
- Power: off-board
- Flapping frequency: up to 24 Hz
- Lift: up to 155 mN ≈ 16 g

→ Flight stability needs to be studied first
Flight stability

Stable flight
 =
Maintaining desired attitude
 (body orientation)

Hovering:
 Roll \rightarrow 0
 Pitch \rightarrow 0
 Yaw \rightarrow Arbitrary
 (constant, or changing
 with finite rate)

Jason Paluck
www.flickr.com/photos/jasonpaluck/4744474530
Mathematical model

Rigid body dynamics (6 DOF) + quasi-steady aerodynamics

1) Vertical dynamics
2) Pitch dynamics
3) Roll dynamics
4) Yaw dynamics

Always stable

Time varying + periodic
Cycle averaging
Linearization in hover

Always stable
Longitudinal flight stability

State space

\[
\begin{bmatrix}
\dot{u} \\
\dot{q} \\
\dot{\vartheta}
\end{bmatrix} =

\begin{bmatrix}
\hat{X}_u & \hat{M}_u & \hat{M}_q \\
0 & 0 & 1
\end{bmatrix}

\begin{bmatrix}
g \\
0 \\
0
\end{bmatrix}

\begin{bmatrix}
u \\
q \\
\vartheta
\end{bmatrix}

+ \begin{bmatrix}
1
\end{bmatrix}

\hat{M}_{ext}
\]

→ characterized by 3 stability derivatives

\[\hat{X}_u < 0, \quad \hat{M}_u < 0\]

\[\hat{M}_u = -K_1 z_W - K_2\]

~ Opposite sign to \(z_W\)

Char. Equation (Root locus form)

\[1 + \frac{\hat{M}_u}{\lambda (\lambda - \hat{X}_u)(\lambda - \hat{M}_q)} = 0\]

\(\hat{M}_u \rightarrow +\infty\)

\(\hat{M}_u \rightarrow -\infty\)
Longitudinal flight stability

Root locus:

\[1 + \frac{\dot{M}_u}{\lambda (\lambda - \dot{X}_u)(\lambda - \bar{M}_q)} = 0 \]

1) Wings below COG
2) Wings close to COG (very narrow interval of \(z_w \))
3) Wings above COG

\[\dot{M}_u = (K_1 z_W) - K_2 \]

\[\text{dominant term} \]

\[\dot{M}_u \rightarrow +\infty \]
\[\dot{M}_u \rightarrow -\infty \]

\[\text{stable} \]
\[\text{unstable, divergent} \]

Same situation in lateral system
BUT stable for different wing positions

Whole system unstable
Flight stability in nature

How to Fly Right – Science Take (http://youtu.be/QLhOCIdbV7g)

Flies:
- wings above COG and stable...

Fly responding to a blast wave (http://youtu.be/QH091zFHdQ0)
Flight stability in nature

Stable, because of sensors for feedback:

1) Halteres (bio-gyroscopes)
2) Ocelli
3) Compound eyes

No halteres → unstable

Ristroph et al., 2013
Active stabilization

Halteres (bio-gyroscopes) ➔ Feedback on angular rate

State space model

\[
\begin{bmatrix}
\dot{u} \\
\dot{q} \\
\dot{\theta}
\end{bmatrix} =
\begin{bmatrix}
\hat{X}_u & 0 & g \\
\hat{M}_u & \hat{M}_q - k_q & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
u \\
q \\
\theta
\end{bmatrix}
\]

Char. Equation (Root locus form)

\[
1 + \hat{M}_u \frac{-g}{\lambda(\lambda - \hat{X}_u)(\lambda - \hat{M}_q + k_q)} = 0
\]

1) Wings below COG ➔ unstable, divergent

2) Wings above COG and sufficient feedback gain

\[
k_q^* > \sqrt{\frac{\bar{M}_u}{\bar{X}_u}} g
\]
No halteres: passive stability can be restored by increasing drag

\[S_1 \neq S_2, \quad z_1 \neq z_2 \]

\[X_u = X_{u,Wings} - k_d(S_1 + S_2) \]

\[M_q = M_{q,Wings} - k_d(S_1 z_1^2 + S_2 z_2^2) \]

\[M_u = M_{u,Wings} - k_d S_1 z_1 + k_d S_2 z_2 \]

\[1 + \hat{M}_u \frac{-g}{\lambda(\lambda - \hat{X}_u)(\lambda - \hat{M}_q)} = 0 \]
Passive stability

Take-off: 1/13 x

- Wings below COG !!!
- Off board power (tether)
- BUT sufficient lift reserve for a radio + battery (2 g)

So far, only 4 projects demonstrated stable flight (actively / passively) in two-winged tail-less MAVs
Flight stability - conclusion

<table>
<thead>
<tr>
<th></th>
<th>Wings below COG</th>
<th>Wings above COG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inherent stability</td>
<td>Unstable</td>
<td>Unstable</td>
</tr>
<tr>
<td>Active stabilization</td>
<td>Not possible</td>
<td>Possible</td>
</tr>
<tr>
<td>active stabilization with rate feedback</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Passive stabilization</td>
<td>Possible</td>
<td>Possible</td>
</tr>
</tbody>
</table>

- **Wings below COG**: Unstable
- **Wings above COG**: Possible

Active stabilization with rate feedback:

- Not possible
- Possible
Flight control by wing motion

NATURE - Hummingbirds: Magic in the Air
http://www.youtube.com/watch?v=Hrlr45uGapQ
Flight control in nature

Roll

Pitch

Yaw

Conn et al., 2011
Flight control in nature

Flight forward & backward via pitch

Flight sideways via roll

DISCOVERY – Hummingbird Time Warp
http://youtu.be/D8vjYTXgUw

N. Boeddeker & J. Zeil,
Australian National University
Control strategy

4 DOF control:

- **Up/down**
 - Control via pitch / roll
 - Forward/backward
 - Sideways
 - Turning

Pitch dynamics ➔ cascade control:

- Speed control
 - \(u_{ref} \)
 - Speed control block (PI)
 - \(\dot{\varphi}_{ref} \)

- Attitude control
 - \(q_{ref} \)
 - Attitude control block (P)
 - \(M \)
 - Pitch dynamics block

\[\begin{align*}
Z & \rightarrow mg \\
\vartheta & \rightarrow mg \\
\varphi & \rightarrow mg \\
\psi & \rightarrow mg \\
\mathbf{u} & \rightarrow mg \\
\mathbf{w} & \rightarrow mg \\
\mathbf{v} & \rightarrow mg \\
\mathbf{N} & \rightarrow mg \\
\mathbf{L} & \rightarrow mg \\
\mathbf{M} & \rightarrow mg \\
\end{align*} \]
Control results

- Little difference between the original and simplified (cycle-averaged + linearized) model
- Prediction of control moment magnitudes
Control moment generation (2 flapping wings):

2 strategies developed and tested:

- Wing twist modulation via root bar flexing
- Amplitude and offset modulation via joint displacements
Wing twist modulation

Lift force control:

- Reduced lift
- Nominal lift
+ Increased lift

Pitch moment:

Roll moment:

According to Keenon et al. 2012
Wing twist modulation

Manual bar flexing

Pitch moment control

SMA driven bar flexing

Roll moment control

± 4mm → sufficient moments

Short stroke, low bandwidth → different actuators needed
Amplitude & offset modulation

Flapping amplitude and offset can be controlled by displacing these joints.

→ Pitch control

→ Roll control

Left offset servo

Right offset servo

Roll servo

32 mm
Amplitude & offset modulation

- Drive: 8 mm brushless DC (5.2 g)
- Control: 3 x micro-servo (6 g total)
- Wingspan: 21 cm
- Total mass: 21.4 g

Exploded view

- Propulsion DC motor
- Flapping mechanism
- Control mechanism
- Control servos

Faulhaber 0824
3 x HobbyKing 5330

90 mm
32 mm
Amplitude & offset modulation

Hover

Flapping frequency 15 Hz
Photron FASTCAM SA3
2000 fps, shutter 1/10000 s
Combined commands

Amplitude difference

- Whole workspace: +/- 24°
- At zero offset: +/- 40°

Average offset

- Whole workspace: +/- 12°
- At zero roll: +/- 15°

Flapping frequency ~ 15 Hz
Stable system (~ pendulum), open loop control:
Hovering flapping flight stability

• Pitch and roll dynamics can be characterized by 3 poles each
• The pole configuration depends on the wing position
• If wings are above the COG, angular rate feedback stabilizes the system.

Flapping mechanism

• New 2 stage mechanism with symmetric output has been developed.
• Take off demonstrated.

Control mechanism

• New control mechanism based on flapping amplitude and offset modulation has been developed.
Future work

Mechanical design

• Control mechanism (efficiency, actuators)
• Weight reduction
• Lift production (wings, gearbox, motor)

Control and avionics

• Attitude sensor
• Micro controller
• Radio
• Motor speed controller
• ...

Control mechanism

On-board CPU

Radio control

Attitude sensor (IMU)

Control mechanism

Wings

Flapping mechanism

Battery
Acknowledgements

André Preumont

Hummingbird team
Laurent Gelbgras
Yanghai Nan
Mohamed Lalami
Hussein Altartouri

Other ASL members

Internship students
Alexandre Hua
Neda Nourshamsi
Mathieu Dumas
El Habib Damani
Raphael Girault
Malgorzata Sudol
Yassine Loudad
Romaine Hamel

ULB students
Servane Le Néel
Arnaud Ronse De Craene
Ilias El Makrini
Tristan de Crombrugghe
Lin Jin
Roger Tilmans
Michael Ngoy Kabange
Nicolas Cormond
Beatriz Aldea Pueyo
Hava Özdemir

My family

My friends

My PhD research was supported by FRIA fellowship (FC 89554).

Foreign partners
Iulian Romanescu (TU Iași)
Mihaita Horodinca (TU Iași)
Ioan Burda (UBB)

BEAMS department